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Optically activea- and S-amino phosphonic acids and their  Table 1. Enantioselective 1,4-Addition Reaction of Nitroalkene

phosphonate esters are an attractive class of compounds owing t¢22 R = Ph) with Diphenyl Phosphite (3) Catalyzed by (R)-1%
their potent biological activities as non-proteinogenic analogues of entry 1 (mol %) solvent temp time yield (%) ee (%)

o- and f-amino acids:? Although several excellent methods for 1 1a(5) EtO 0°C 4h 66 6
enantioselective synthesis@famino phosphonate esters have been 2 1b(5) E&O 0°C 20 min 70 16
established,using either metal-based catalysts or organocatalysts, 3 lc(5) EtO 0°C  20min 58 43
asymmetric synthesis gfamino phosphonate derivatives has been g ig ((55)) Etég 88 18 m:g - gg 7893
largely unexplored, despite the intriguing therapeutic action of these g 1d(5) EtO —40°C 30 min 91 87
compounds.In this context, it is considered that asymmetric 1,4- 7 1d(5) i-PrO —40°C 2h 92 86
addition reaction of dialkyl phosphites to nitroalkeh&provides 8 1d(5) CPME —40°C  4h 81 86

9 1d (5) t-BuOMe —40°C 1h >98 92

a practical route to thgg-amino phosphonates, which can be .

. " . 1le(5) t-BuOMe —40°C 10 min >98 92
transformed from the corrt_aspondlng 1,_4-add|t|on prpdhﬁtsutro 110 le(l) tBuOMe —40°C 2h 94 92
phosphonates, through simple reduction of the nitro group. The
development of catalytic enantioselective 1,4-addition reaction of 2 Unless otherwise noted, all reactions were carried out using 0.0025
nitroalkenes with disubstituted phosphites is hence a substantialmm9|)9f E)R)Zsl (5me0_| "éq), ?35 TTI1m0|t 912% and 0.075 TT/%' EE‘ ((%(-)5 )

. . . . _ equiv) in O. mL of Indicated solvent In the presence o mg).
step toward the synthesis of enantioenricliedmino phospho_ b Enantiomeric excess was determined by chiral HPLC analysis (see
nates? Recently, we successfully developed novel axially chiral supporting Information for detailsy.Cyclopentyl methyl ether The
guanidines 1)° as highly efficient Brgnsted base catalysts for reaction was carried out using 0.002 mmol BJ-Le (1 mol %), 0.2 mmol
promotion of enantioselective transformatighga deprotonation ~ ©f 2& and 0.22 mmol 08 (1.1 equiv) in 1.0 mL otert-butyl methyl ether

of 1,3-dicarbonyl compounds. Herein, we report the first highly in the presence of MS 4A (80 mg).

enantioselective 1,4-addition reaction of nitroalkengp \ith 1-5). The enantioselectivity increased step by step with an increase
diphenyl phosphited) catalyzed by axially chiral guanidine)( in the steric size of the alkyl moiety G (entries-3). The

(eq 1). The guanidine catalystl)( successfully activated the  jntroduction of 3,5-substituents to the phenyl ring of the Ar
phosphorus nucleophile and enabled high enantioselectivity andsypstituents was the most effective in enhancing both the enanti-
catalytic efficiency for a broad range of nitroalkenes bearing oselectivity and catalytic efficiency (entries 4 and 5); the reaction

aromatic or aliphatic substituents. was completed within 10 min with a marked increase in enanti-
oselectivity relative to the catalysi€) having the unsubstituted
0 (R-1 (1 ~5mol%) O“P(OPh)2 Ar group, regardless of the electronic properties of the Ar
RXNO2 + Boph), No, substituents. As expected, lowering the temperature-46 °C
H tert-butyl methyl ether R . R .
2 3 4 resulted in an enhanced enantioselectivity (entry 6). Further
screening of ethereal solvents usii)-(Ld revealed thatert-butyl
OO Ar H 1a:G=CHy, Ar=CeHs methyl ether was th_e best solvent among those ex_amined (entries
N, G  1b:G=PhCHy Ar=CgHs 6—9). Thus catalysis byR)-1e was reinvestigated itert-butyl
=N 1c: G = PhyCH-, Ar = CgHs- methyl ether. As a result, it was found thah was consumed
OO Ni-| 1d: G = PhyCH-, Ar = 3,5-(CF3),CeHs3- completely within 10 min even at40 °C, while the enantiose-
Ar 1e: G = PhyCH-, Ar=3,5-t-Bu,CeHs- lectivity was as high as that observed in catalysisRy(d (entry
(R-1 10 vs 9). The catalytic activity ofR)-1eis prominent; the catalyst

loading can be reduced from 5 to 1 mol % without any loss in
During the course of our studies, enantioselective catalysis of enantioselectivity (entry 10 vs 11).

the 1,4-addition reactions @with 3 were reported by Wang and With the optimized reaction conditions in hand, we then
co-workerst! In their report, moderate to high enantioselectivities investigated the scope of the enantioselective 1,4-addition reaction
were attained through extensive screening of cinchona alkaloid using R)-1eas a promising catalyst. As shown in Table 2, a broad
derivatives'? which have been widely utilized as efficient orga- range of nitroalkene<] is applicable to the present transformation.
nocatalysts. In our approach, we explored suitable substituents onA series of nitroalkene26—g) bearing aromatic substituents with
the axially chiral guanidine catalyst)(by changing the alkyl moiety various electronic properties all proved to be excellent substrates
G and the Ar group. An initial screening was performed in the with respect to enantioselectivity and chemical yield (entrie§)1
reaction off-nitrostyrene 2a. R = Ph) with diphenyl phosphite The reaction proceeded smoothly in the presence of 1 mol %
(3) using 5 mol % ofl in diethyl ether at OC in the presence of  catalyst, giving the corresponding productb{-g) in nearly
molecular sieves (MS) 4A3 As shown in Table 1, it is noteworthy  quantitative yield with high enantioselectivity. In contrast, het-
that G and Ar substituents exhibited a strong impact not only on eroaromatic-substituted nitroalkeneéh@ndi) gave the products
the enantioselectivity but also on the catalytic efficiency (entries (4h andi) in modest yield (around 50%) under the optimized
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Table 2. Enantioselective 1,4-addition of Various Nitroalkenes (2)
with 3 Catalyzed by (R)-1e (1 mol %)?2

and 1,4-addition productd), This material is available free of charge
via the Internet at http:/pubs.acs.org.

entry 2 4 time (h) yield (%)° ee (%)°
1 2b: 4-MeOGHs— 4b 4.5 91 91
2 2c. 4-BrCsHa— 4c 1 97 91
3 2d: 2-MeOGH4— 4d 3 >98 88
4 2e 2-BrCsHs— 4e 0.5 98 94
5 2f: 2-NO,CgHa— Af 0.5 96 97
6 2g. a-naphthyl 49 0.5 >98 94
7d 2h: 2-furyl 4h 7 79 89
8d 2i: thiophen-2-yl 4i 4.5 86 91
% 2j: (CH3)2CHCH,— 4j 0.5 84 80
10° 2k: C-C6H11* 4k 1 87 85
11 2l: CH3(CHp)a— 4 6 >98 87

aUnless otherwise noted, all reactions were carried out using 0.002 mmol
of (R)-1e (1 mol %), 0.2 mmol o, and 0.22 mmol o8 (1.1 equiv) in the
presence of MS 4A (80 mg) in 1.0 mL oért-butyl methyl ether at-40
°C. P Isolated yield ¢ Enantiomeric excess was determined by chiral HPLC
analysis. Absolute configuration was determined to $dor 4i (see
Supporting Information for detailsy.The reaction was carried out using
0.01 mmol of R)-1e (5 mol %) at—60 °C. € The reaction was carried out
using 0.01 mmol of R)-1e (5 mol %).

reaction conditions (1 mol % oR)-1e, at —40 °C). This problem
could be circumvented by lowering the reaction temperature to
—60 °C and increasing the catalyst loading to 5 mol % (entries 7
and 8). Although aliphatic-substituted nitroalken2s]) exhibited
slightly lower enantioselectivities than those of their aromatic
counterparts (entries-911), their performance in the present
enantioselective reaction with diphenyl phosphBgi$ still good
taking into account their typically low reactivity in 1,4-addition
reactions; the corresponding produetg{l) were obtained in high
chemical yield.

Finally, the reduction of the nitro group iha was examined
under modified nickel boride conditions (eq 2). The reduction was
readily accomplished in the presence of Boco yield N-Boc
p-amino phosphonateb) without compromising the integrity of
the stereogenic centét.

o, NiCl, / NaBH, o
“P(OPh), Boc,0 (1.5 eq) “P(OPh), ®
pr ~NO2 MeOH/CF;CH,OH = 10/1 pr - NHBoc
4a i, 3.§ h 5
92% ee 77% yield 91% ee

In conclusion, we have demonstrated the highly enantioselective
1,4-addition reaction of nitroalkenes with diphenyl phosphite
catalyzed by a newly developed axially chiral guainidine. A broad
range of nitroalkenes, bearing not only aromatic but also aliphatic
substituents, is applicable to the present enantioselective reaction.
The method facilitates the highly enantioenriched synthesis of
-amino phosphonate derivatives of biological and pharmaceutical
importance. Further studies utilizing the activation of phosphorus
nucleophiles by axially chiral guanidines are underway in our
laboratory.
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